If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-18p=120
We move all terms to the left:
p^2-18p-(120)=0
a = 1; b = -18; c = -120;
Δ = b2-4ac
Δ = -182-4·1·(-120)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{201}}{2*1}=\frac{18-2\sqrt{201}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{201}}{2*1}=\frac{18+2\sqrt{201}}{2} $
| 3x+7+53+87=180 | | -1+3x=-17 | | 90+20+7x+7=180 | | 5^x=5000 | | 14+52+70-10+y=180 | | (-5x+1)-(3x+2)=-9 | | 120+5x-10=180 | | (5x+1)-(3x+2)=-9 | | 56+5x=6 | | 6x+8+x+52+5x-12=180 | | 10x+11=-39 | | y+35=78 | | 4x+1+2x+7=180 | | 13b=52 | | y+11=97 | | 8(-9-1)=5x-35 | | 5x(x-1)-2(2x^2+7x)=-8 | | 44+5x+4+x=180 | | (7x-8)+76=180 | | 45+(5x+25)=180 | | 136+(4x+12)=180 | | 5m÷3=3 | | 3u+6)=42 | | k+11+8k=29 | | 5x+7-5=2 | | 2x+3(x+2x)=2x(2-4)+1 | | 0,4.x=40 | | |x^2+3|-5=0 | | 78+3x/15+x=4,5 | | 8x+-28=44 | | 6n-48=2n+4 | | 5p+2=4p–1 |